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ABSTRACT

In this paper we study certain fractional factorial designs,

which are known in the literature as incomplete orthogonal arrays.

We indicate situations in which these designs can be of practical *4

interest and study their statistical properties.

1. INTRODUCTION

The problem that we will consider in this paper deals with

symmetrical factorial designs based on k factors each at s

levels. Potentially there are sk possible combinations at

% which observations can be made in such experiments. In many prac- a

-w tical situations it is undesirable to make this many observations. St.aw, "

This introduces a need to select some of the possible combinations -

at which one or more observations should be obtained. Such ex- "-"

periments, in which one or more of the possible combinations are

not used, are known as fractional factorial experiments. The

choice of the combinations at which observations are to be made is DJ -

- - --'l-~ D...... .b .o . .. .... ... .
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a difficult problem. There are statistical considerations (e.g.,

the proposed model, the experimenters objective), but also prac-

tical considerations (e.g., financial limitations, time considera-

tions) that can influence this choice. In a series of three papers

Rao (1946, 1947a, 1947b) inspired many later researchers by intro-

ducing and studying certain fractions with many desirable statisti- r

cal properties. These fractions are now known as orthogonal arrays.

A formal definition will be given in Section 2. For the current

status of this subject we refer the reader to Hedayat and Stufken

(1986b).

The inspiration for this paper is that there are practical

situations for which certain specific combinations have to be ex-

cluded from experimentation. For example, it may be desirable

that combinations in which 2 or more factors appear at certain

levels are excluded. Safety considerations or financial reasons ",P

are potential causes for such a restriction. This paper studies ".-

certain fractions in which some undesirable combinations do not

appear, but in which the remaining structure is such that under

the given restriction the fractions are 'as close as possible'

to an orthogonal array.

Example 1.1: Suppose we are considering an experiment based on 3

factors, each at 4 levels denoted by 0, 1, 2 and 3. It may be

desirable to have a fraction in the form of an orthogonal array of

strength 2, except that due to practical considerations it may be

undesirable to have any treatment combination in which more than

one factor appears at level 2 or 3. A viable design under the

given restriction is exhibited below..

0 0 0 0 1 1 1 1 2 2 3 3 '

0 1 2 3 0 1 2 3 0 101

2 3 1 0 3 2 0 1 1 0 0 1 ..

The combinat.ions to be used in the experiment are given as the

-2-
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columns of this array. There is no combination in which two fac-

tors appear both at level 2 or 3. But other than that, with re-

spect to any two factors all combinations of levels that we did not

exclude appear exactly once in these columns. This is an example -

of what is known as an incomplete orthogonal array.

We would like to point out that in the above example the design

can be completed to an orthogonal array by adding the following <.. .

four (undesirable) combinations:

2233 ,€.2323 
2332 

Although the name 'incomplete orthogonal array' may give rise to

the idea that it can always be completed to an orthogonal array

(without increasing the frequency of level combinations that were

not excluded), this is not the case. There are two reasons why it

may not be possible to do this. It is possible that an orthogonal

array with the required parameters does not exist, but it may also

be that the structure of the incomplete orthogonal array does not * J.*.
*. 

permit such a completion even though an orthogonal array with the

desired parameters does exist. For more details we refer to .

Hedayat and Stufken (1986a).

In Section 2 we will formally introduce incomplete orthogonal

arrays. In Section 3 we will study some of the statistical aspects

of these arrays. Section 4 will give a brief discussion of possi-

ble future research projects in this subject. For the mathematical

properties of incomplete orthogonal arrays we refer the reader to

Horton (1974), Maurin (1985) and Hedayat and Stufken (1986a).

-3-
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2. DEFINITIONS AND NOTATIONS

In this section we will give a formal definition of an incom-

plete orthogonal array. Throughout the paper S will denote a set

of s symbols, while H will be a subset of S of cardinality h.

Definition 2.1: A k x N array based on S is called an incom-

plete orthogonal array based on S and H and of strength t if "

the columns of any t x N subarray contain each element from -.

St - Ht equally often, say X times, while those from Ht do
not appear at all.

An immediate consequence of the definition is that the equality

t t
N = X(s -h ) must hold. The integer A is also called the index

of the array. We will denote these arrays by IOA(N,k,(s,h),t).

For comparison we recall the definition of an orthogonal array.

Definition 2.2: A k x N array based on S is called an ortho-

gonal array of strength t if the columns of any t x N subarray

contain each element of St  equally often, say X times.

Here we see immediately that N Ast. We denote these arrays
by OA(N,k,s,t).

As in the study of orthogonal arrays, an interesting question L
is to find the largest value of k for which an IOA(N,k,(s,h),t)

exists, for given N,s,h and t. Hedayat and Stufken (1986a)

showed that the inequality ..

k - s/h + t - 1

must always be satisfied.

We would like to point out that incomplete orthogonal arrays

are a heavily structured type of balanced arrays. The latter

arrays were introduced by Chakravarti (1956) and many interesting

results on it were obtained by Srivastava (1972) and Rafter and

Seiden (1974). Srivastava and her co-workers, as well as several

Japanese statisticians, have made valuable contributions to the

area of balanced arrays.

-4-
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It is easy to show that an orthogonal array of strength t is

also of strength t' < t. However for incomplete orthogonal arrays

such a property does no longer hold. In any t' rows of an

IOA(X(s t-h t),k,(s,h),t), t > t', it can easily be shown that any
aper ( t- t ' t - t

ttuple from H appears X(s h ) times, while those
f o S t '  H t '  s t -t ' '

from S -H appear Xs times each. The array is thus

still a heavily structured balanced array of strength t', but with

our definition of an incomplete orthogonal array there is for any

array at most one strength for which the requirements in the defi-

nition are satisfied.

3. STATISTICAL ASPECTS OF INCOMPLETE ORTHOGONAL ARRAYS

In this section we will prove a general result on the use of

incomplete orthogonal arrays of strength 2 as fractional factor-

ial designs under the orthogonal polynomial model. We will illu-

strate this result with two detailed examples. We will assume -

that the reader is familiar with the standard terminology for fac- -

torial designs. If not, a useful reference is Raktoe, Hedayat and I'

Federer (1981).

Suppose that under the orthogonal polynomial model in a symme-

trical factorial design we can neglect all the interaction effects.

It is well known that if a fractional factorial design in the form

of an orthogonal array of strength 2 is used, the general mean and

all main effects are (orthogonally) estimable. The following

theorem gives a comparable result for incomplete orthogonal arrays.

2_ 2
Theorem 3.1: If we use an IOA(A(s -h ),k,(s,h),2) as a fractional

factorial design under the orthogonal polynomial model and under

the assumption that the only non-zero factorial effects are the '..-.

general mean and the main effects, then

(i) if k < s/h + 1 all effects are estimable;

-5- '5
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(ii) if k = s/h + 1 we add one more run in which

all factors are at one of the h levels of H k

and reach then the same conclusion as in (i).

(Recall from Section 2 that k : s/h + 1.)
-. ,.

Proof: Let A1 be the incomplete orthogonal array based on S and

H as in the statement of the Theorem. Let A be the fractional
kk2

factorial design with all h runs from H . Let A be the juxta-

position of A1 and A2 ' If we now let X, X1  and X2 be the

design matrices corresponding to A, A1  and A2  respectively,

under the model as described in the Theorem, then we can write
"I,-.

Our first claim is that X is of full column rank, i.e.,

r(X) = k(s-1) + 1. An easy way to see this is as follows: look at
Shk-2

A , the juxtaposition of h replications of A and X re-
.-1

plications of A2. Then A is an orthogonal array of strength 2,

implying that its design matrix X under the above model is of

rank k(s-l) +1. But the rows in X are just replications of the
X*

rows in X. Hence r(X) = r(X ) which shows the claim. We would

like to show that r(X) k(s-l) +1. For this now it suffices to

show that the row space of X2  is a subspace of the row space of

X Choose an arbitrary row in X2, say r, which corresponds to
V2P
a treatment combination, say (el,.. ,ak) , in which all levels are

Vtn ..9
from M. In A there are A(s-h) runs in which the i factor LAMM

is at level a With u = X(s-h) we denote the corresponding rows

in X1 by r i ) ,.. ,r , 1 < i -< k. The number of runs in A in
2 u 1

which no factor is at a level from H equals X(s 2-h )- kh(s-h)=

X A(s-h)(s+h-kh). If we denote this number by v then v > 0 if

and only if k < s/h + 1. Assuming that this holds let rl,... ,r be

the rows in X1 corresponding to these runs. We claim now that

-6-
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k u M (k-l)u v

(3.1) Z r. =ur + E ri.
i=lj=l J =1

Notice that this claim would establish (i), since the arbitrarily

selected row r from X is expressed as a linear combination of
2

rows in X V
Let M = (mi), 0 i, j !< s-1 be the orthogonalized matrix

corresponding to a one-factor orthogonal polynomial model. The

entry in X corresponding to a run (e'l .... ak) and an effect
-l.. 0 0 0 -O1. isgivenby€ .£_i.£ £+I ~~ 1 E. !5 i- £- k, 0 <- j -!sI5sgvn y.€

msj. (This is under the assumption that M is not normalized

ano that its first column is (i,....l)'. If M is normalized

we would have to add everywhere a constant term, but other than

that the proof can be continued unchanged. See also Hedayat and % ',
Stufken (1986a)).

In the runs corresponding to the rows in the left hand side

of (3.1) factor Z is u times at level a, and X(k-l) times

at level y for any y E S - H. Hence the coordinate of the left

hand side in (3.1) corresponding to the effect
0 O 0 0~ 0

... 0-l .£P. 01 •.k equals

(3.2) um + A(k-l) E m.
J yES-H J

In the runs corresponding to rl,...,r factor Z is )(s+h-hk)

times at level y c S -H. In the run corresponding to r factor

I is at level a£. Hence the coordinate of the right hand side

in (3.1) corresponding to the above effect equals

(3.3) umrn + (k-l)u X(s+h-hk) E m .

v yES-H

It is clear that (3.2) and (3.3) are the same, which establishes

(3.1) and thus (i).

-7-
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For (ii) the problem is that v = 0, and every run in A1  con-

tains exactly one element from H. However choosing an arbitrary
(1)-

row r from X and defining the rows r as above we obtain

that the coordinate of

k u ()I
E r - ur

i=1 j=l J

corresponding to the same factorial effect as above equals

X(k-l) m .

Since this does not depend on r we see that if we add one row

from X to X all other rows from X can be obtained as a
2 1 2~

linear combination of the selected row in X and the rows in XI.

That shows (ii) and concludes the proof of Theorem 3.1 "

We will now give two examples, the first of which relates to

the situation in Theorem 3.1 (ii), the second to part (i) of that

theorem.

Example 3.1: Let s = 4, h = 2, k = 3. Indeed k = s/h + 1. Con-

sider the incomplete orthogonal array from Section I.:

000011112233
" . 0 1 2 3 0 1 2 3 0 1 0 1.-'

2 3 1 0 3 2 0 1 1 0 01

The design matrix X for this fractional factorial design under

% the model in Theorem 3.1 is given below. For its computation we

used the matrix M given by

M = 1 I - -1"3
1 1 -1 -3

3 1]
. ,t. ied

~We obtained :

'~. ,-' . -%.4% ow_ *-, '.-;. ' *% .% - *-..- . ''... '..,'. -" .* ,. -**. . ", . .. "-
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002 1-3 1-1-3 1-1 1-1-3
0 1 3 1 -3 1 -1 -1 -1 3 3 1 1
0 2 1 1 -3 1 -1 1 1-3 -1 -1 3
03 1-3 - 3 1 1 -3 1 -1

0 3 1 -1 -1 3 -3 1 -1 3 11

X 1121 -- 3 -1 -1 3 1 -1 -3
1 2 0 1 -1 -1 3 1 -1 -3 -3 1 -1

13 1 1-1-1 3 3 1 1-1-1 3
2 0 1 1 1 -1 -3 -3 1 -1 -1 -1 32 1 0 1 1 -1 -3 - 1 3 -3 1 1-
3 0 0 1 3 1 1 -3 1 -1 -3 1 1
3 1 1 1 3 1 1 -1 3 - -i 13

11The columns of X1  correspond, in the given order, to the follow-

ing factorial effects:

0 0 0 1,0,0 .20,0 3,0 0 0 1 0 01 2 0 0 3 0 0 0 1

0 02 0 031i€2+ 3, 1i 2 3 "

That this matrix is not of full column rank becomes clear if we look

at the information matrix X'X This matrix is displayed below. p -

12 -8 0 4 -8 0 4 -8 0 4 .
- 8  60 -4 0 -16 0 8 -16 0 8

0 -4 12 -8 0 0 0 0 0 0 ..

.11= 4 0 -8 60 8 0 -4 8 0 -4
S: 8 -16 0 8 60 -4 0 -16 0 80 0 0 0 -4 12 -8 0 0 0

4 8 0 -4 0 -8 60 8 0 -4
-8 -16 0 8 -16 0 8 60 -4 0.

0 0 0 0 0 0 0 -4 12 -8
-4 8 0 -4 8 0 -4 0 -8 60j

It is easy to verify that the vector (5,2,0,-1,2,0,-1,2,0,-i)'

is in the null space of this matrix.

If we add one more run to our fractional factorial design, a

run in which each factor appears at a level from H = {2,3} the

new design matrix, say X, is of full column rank. As an example,

suppose we add the run (2,2,2). This corresponds to adding the

row vector

-9-
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pL
to the previous design matrix. Computing X'X gives

13 -7 -1 1 -7 -1 1 -7 -1 1
-7 61 -5 -3 -15 -1 5 -15 -1 5
-1 -5 13 -5 -1 1 3 -1 1 3

XiX 1 -3 -5 69 5 3 5 5 3 5 .
-7 -15 -1 5 61 -5 -3 -15 -1 5
-1 -1 1 3 -5 13 -5 -1 1 3
1 5 3 5 -3 -5 69 5 3 5
-7 -15 -1 5 -15 -1 5 61 --5 -3
-1 -1 1 3 -1 1 3 -5 13 -5
1 5 3 5 5 3 5 -3 -5 69

This matrix is of full rank, and its inverse is given by:

125 35 25 -5 35 25 -5 35 25 -5-C
35 27 15 -1 16 10 -3 16 10 -3
25 15 75 5 10 0 -5 10 0 -5

-1 1 -5 -1 5 13 -3 -5 -1 -3 -5 -1
(X'X) 800 35 16 10 -3 27 15 -1 16 10 -3

25 10 0 -5 15 75 5 10 0 -5
-5 -3 -5 -1 -1 5 13 -3 -5 -1
35 16 10 -3 16 10 -3 27 15 --1
25 10 0 -5 10 0 -5 15 75 5 *..

S-5 -3 -5 -1 -3 -5 -1 -1 5 13

Example 3.2: Let s = 4, h = 2 and k = 2. Thus k < s/h + 1.

Consider the following incomplete orthogonal array:

000011112233
0 12 30 12 3 0 10 1

We will in this example, since we will not only be interested in

the rank of the design matrix but will give some more detailed

computations, use the normalized form of M, i.e.,

-10-
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1 -3 1 -1
2 2/5- 2 215

1 - 1 3

M=I

1 1~1 -3

2 2r5 2 2/V

1 3 1 1

2 r/- 2 2/5

The design matrix X under the model in Theorem 3.1 and the

information matrix X'X as well as its inverse (X'XI)- are
111

displayed below.__

0 0 r5 -3 r5 -1 -3 r5 -1

0 1 r5 -3 V5 -1 -1 - r5 3 -

0 2 r5 -3 5 -1 1 - -3

0 3 / -3 V5 -1 3 V1 1"-i

4,,f- X : 1 0 r -1 - V 3 -3 r5 -1

11 1 -1 - V5- 3 -1 - r5 3

1 2 r5 -1 - V5 3 1 -/51 -3

1 3 J5 -1 -/r 3 3 55 1

2 0 5 1 - 1- -3 -3 r5 -1 v

2 1 r5 1 - 5 -3 -1 -/5 3

3 0 V1 3 J5 1 -3 r5 -1

3 1 r5 3 r5 1 -1 -r 3

00 1 0 2 0 3 0 0 1 0 2 0 3
The columns correspond to ¢102' @i¢2' €1€2' 01 2' Y2' €102' Yi2'

in that order.

-1I-
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4 .
3 -_.. 0 1 -1J 0

2r 4/- 2/5 4; r

-1 3 -1 0 -1 0 ;%1

2Y3 4/r 10

-1 3 -1 0 o 0
0 40 20 0

4 r 1 2 1'5-

- - 0 1 3 0215 4 1-"- 4" r/-5 10

o o - 3 -0

1 0 -1 0 -i 

0 2 --- 2 3 -1 -

"0 0 0 -
2 22

2 19 1 -i 4 -2-
0 2 5-

o __ 11oo .

XlX - - - 1 8 -2 0

(xr5 F5 ""

1-2 19 1 -1

,r- 5 0 2Y5

0 0 0 0 1 3 -1
2 5 2 w-- .

-1 -2 0 1 - 1 1 8
55 5

-12-
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It is now a simple exercise to compute the BLUE of each of the
factorial effects. These are given below, with Y referring

to the observation under run (m,8).

02 i(Y02  + y 123+ y 132+ l 20+ y 21+l 30 + Y 3 1 )

Y1€2 = - (-5Y 00 - 5Y01 - Y02 - Y03 - 3Yo - 3Y1 1 + YI2

+ Y + 2Y2 0 + 2Y2 1 + 6Y30 + 6Y3 1)

13 2 0 1 30 Y1

0102 = 4(Y0 0 
+ Y Y02 Y03 -10 YI 11 1 12 1 13 2Y20

21 30 31~- 2Y2 + 2Y3 + 2Y31)

3 0 1 - y + 2Y + 2Y + Y + Y 3Y -3Y21
102 03 10 11 12 13 20 21

+ yo + 
'

0~ 1

01 1 (-5Y 00 -3Yol + 2Y02 + 6Y103 05Y _ 3Y11 + 2Y12 .Z

+6Y1 3 - 20 +21 -30 +31

02 1 -Y -2Y + 2Y + -Y - 2Y + 2Y

1 2 = Y 0 0  01 02 03 10 11 12 13

+ 20- Y2 1 30 -31
• . ____ 

% 4

03 _3Y + Y + 2Y 3Y + Y Y + Y

~1 2 2'(2 01 -3 0 2  03 11 12 +13 - 20 21

Y 30 + Y31)

-13-
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4. CONCLUDING REMARKS

In the previous sections we indicated situations for which the

use of incomplete orthogonal arrays as fractional factorial designs

might be considered and gave a useful statistical property for such

arrays of strength 2. However, we are well aware that many inte-

resting questions remain unsolved. A study of the statistical

properties of incomplete orthogonal arrays of arbitrary strength ,A'

twould certainly be welcome. The available results in the litera- .

ture on the construction of these arrays are also rather meager.

It would also be nice if we could replace the added treatment com-

bination In Theorem 3.1 (ii) by one in which at most one factor

appears at a level from H. We do not know whether this can be

achieved or not.
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